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Let O =i Ay <A, << - <0 A, be a finite set of real numbers and let %,
denote the set of rational functions of the form

L P X ax't
RO o) 7 Sho
We seek to determine the degree of approximation possible by functions in
Z 4 to arbitrary continuous functions on [0, 1]. More precisely, we seek upper
bounds for the approximation index [, defined as

DEFINITION.
[y sup inf " f R
e ReA

where ¥ denotes the set of contractions on [0, 1], that is, the set of functions
[ osatisfying [ f(x) —f(y)] << ]x —yv! for all O0-Zx < v 1, and '
denotes the usual sup norm.

The importance of 1, in approximating an arbitrary continuous function
lies in the fact that for any continuous f, there is some R € # ; such that

1= R <2 2wx1 )

where w; denotes the modulus of continuity of f. (See, e.g. [1, p. 440].)

It can be shown by a standard argument that I, > [/2rn . (Consider the
he & satisfying h(x) = (—1)*/2n for x - = kjn, k = 0, 1,..., n, and linear in
between; then apply Descartes’ Rule of Signs to show that R(x) = 0 gives
the best uniform approximation in # ,.) On the other hand, it was recently
shown [2] that for any infinite sequence A;, A, Ay ,..., with A, — o0 the set
of rational combinations of the monomials x* is dense in C[0, 1]. It follows
that for any such sequence, /., — 0 as n — . In fact, using a variation of
the method in [2], we will be able to show that if the X’s are sufficiently
separated, 7, == 10/n. Hence, in those cases, the order of magnitude of [,
is completely determined. Our main resuits are as follows.
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THEOREM. Sef oy = A o = A, — Ay k ==2,3,..., 1.

(A) Ifop =k forallk =2

1, < 10/n.
(B) If. fork =2
(i) ay =1
or
(i) {ogt is monotonic
I, << A7

where A is a positive number which depends only on x, . (In fact, it can be
shown that A <70 Max (1, 1/(x)1/%).)

Note that (B) includes the cases where {A;} is any subset of the integers or
any “familiar™ sequence such as A, = k#, A, == k log k, etc.

In our proof, we will construct rational functions of the form P/Q where
Q(x) = Ofor x > 0. However, if A; > 0, it will follow of course that Q(0) -~ 0
and by R(0) we will understand lim,_, R(x). (Alternatively, we could insist
that A, -0.)

Proof of (4). To simplify notation, for any fe.¥, we consider g{(x)
nf(x/n) on the interval [0, n]. Note that
rglx —8) — g <o (h

We seek a rational function r such that | g(x) — r(x)| << 10 for all x € [0, n].
Setting R(x) = (]/n) r(nx), it will follow that | /' — R < 10/n. To construct
roletg, =g(j),j=—=1,2,....n and set

j-1

n Aj n A
- g;x X
F(.\’) o z 1112\__, ,\ /jzl (\]2\: ..

so that
XY X
g(x) — r(x) = Z (gx) — &) Tﬁ/z 3w, (2)

Suppose then that &k — | <X x << k. To estimate | g(x) — r(x)', we apply a
triangle inequality in (2) and mequdhty (1) to obtain

g(x) — r(x).

: ‘ l ! \ n :
Z |[4‘]\ 12,‘ + Z 121 /Z :x12a,_t..../'o.}
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k-1 Ay
R . /\ | \ A / kS A1
,2-1 102 o - (k )=

;%;ji12\~~ /1n- Jow

If we call the first sum above S; and estimate the terms from j == & — | to
j =1, we find

(k — 1) ;:)1 .. (\_{‘;Q;J, .
k — 2 4k 2z S, T
S 2 3l ke e ) e )

Note then that ((k — j)j(k — 1))* = Sforall I << < k so that

Similarly, setting

[ e oy
we find
oo b2t ety ) ()
l\ FAE | [\ [ I/\ k2
b)) )

i .
S, - YAﬂﬁ;ll s

Hence

g(x) — r(x)] =18y - 8, << 10
anh (A) Is proven.
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Proof of (B). (i) If o, == 1, we need only consider the subsequence {3}
of {};}, defined by

Me == AeGran) 2 » k=1, 2. [m'72].

The 5;'s are sufficiently separated so that we can apply our resuits in (A) to
conclude that for any f'e ./, there is some

R(xy = Y apx™ / Y by

with

fe RS I0/[ ) 7 20/a0 2,

Since the 7’s form a subset of the A’s. we deduce the same upper bound
for/7,.

(ii)  Suppose {a;}r_s is monotonic and suppose first that it is an in-
creasing sequence. Then, if a1 == 1, we can apply the previous results to
ALy io]s Alpialag »e-r An to conclude 1, < 30/n'/2 Tf, on the other hand, oy, << 1
we consider the sequence n, = A, — A .k =1, 2., [#/2]. Since »; -~ 0 and
N1 — M = 1, the analogous approximation index for “‘polynomials™
> apx™ is asymptotic to (3 n,) 12 < ([n)2] )1/ < Afn' /2 See [3. p. 340].

That is, for any f€ S, we can find P(x) - Y a,x" such that

=Pl A

Noting, then, that

PO) = Y @™ = ¥ apt ¥ e £,

our result follows. Completely analogous reasoning applies if {«;}5 is de-
creasing and the proof is complete.

Remarks. (1) Asin the proof of Theorem (B), it is evident that rational
combinations of {x*} form a dense set in C[0, 1] for any sequence 0 < A; <
A, <7 - (even without assuming that A, — oo as k — o).

{2) While the upper bound in Theorem (B) depends on x, (or A,) this
dependence may be unavoidable. Tn fact, if we take a decreasing sequence
{A—0(e.g., A, == 1/2¥) so that the A,’s are not bounded away from zero, it
is not cven clear that rational combinations of the {x*} are dense in C[0. 1].

{3) As mentioned above, the exact order of magnitude of 7, in general
is still undetermined. An appealing conjecture is that 7, ~ 1/n for any
sequence 0 <X A, << A, <C - << A, . Aside from the cases considered in (A).
this is certainly true if A, = Bk, 0 << § <C 2 since the corresponding poly-
nomial approximation index is ~(1/n). If A, = Bk. B = 2, the polynomial
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approximation index is ~(1/n*/®). In these cases, the following smaller
estimate can be given for 7, .

ProposiTION.  [fA, — Bk, B - 2,

A log*n
B it

L,
where A depends only on .

Proof. For any fc .7, we consider

2(x) = fx'/),
Since
¢ 0) — g(x) o j(x h SME — xR B8,

¢ satisfies a Lipschitz condition of order 1/8. Furthermore, g is of bounded

variation since for any partition 0 . x, </ x{ -7 - < x,, = 1 of the unit
interval
Z celxg) gl ) Z_ (»\‘;‘ Co- -\'i-’rql) =

dorl

But then. according to a theorem of Freud [4] there exists an ordinary nth
degree rational function

R,(x)
with
¢ - R Alogin
i1
We need only note then that
\g—fR;:H'."“ 2apyty _ XXt
= — S bk = 1f(x) S by
and the proposition is proven.
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