On the Efficiency of General Rational Approximation

Joseph Bak
Department of Mathematics, City College, New York, New York 10031
Communicated by Oved Shisha

Received March 10, 1975

Let $0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}$ be a finite set of real numbers and let π_{1} denote the set of rational functions of the form

$$
R(x)=\frac{P(x)}{Q(x)}=\frac{\sum a_{k} \cdot x^{\lambda_{k}}}{\sum b_{k} x^{\lambda_{k}}} .
$$

We seek to determine the degree of approximation possible by functions in \mathscr{R}_{A} to arbitrary continuous functions on [0, 1]. More precisely, we seek upper bounds for the approximation index I_{A} defined as

Definition.

$$
I_{1}-\sup _{f \in \mathscr{S}} \inf _{R \in \mathscr{R} R_{1}} f \cdots R
$$

where \mathscr{F} denotes the set of contractions on [0, 1], that is, the set of functions f satisfying $|f(x)-f(y)| \leqslant|x-y|$ for all $0: x<y \leqslant 1$, and denotes the usual sup norm.

The importance of I_{A} in approximating an arbitrary continuous function lies in the fact that for any continuous f, there is some $R \in \mathscr{R}_{A}$ such that

$$
\|f-R\| \leqslant 2 \omega_{f}\left(I_{4}\right)
$$

where ω_{f} denotes the modulus of continuity of f. (See, e.g. [1, p. 440].)
It can be shown by a standard argument that $I_{A} \geqslant 1 / 2 n$. (Consider the $h \in \mathscr{S}$ satisfying $h(x)=(-1)^{k} / 2 n$ for $x=k / n, k=0,1, \ldots, n$, and linear in between; then apply Descartes' Rule of Signs to show that $R(x) \equiv 0$ gives the best uniform approximation in \mathscr{R}_{A}.) On the other hand, it was recently shown [2] that for any infinite sequence $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots$, with $\lambda_{\%} \rightarrow \infty$ the set of rational combinations of the monomials x^{λ} is dense in $C[0,1]$. It follows that for any such sequence, $I_{A} \rightarrow 0$ as $n \rightarrow \infty$. In fact, using a variation of the method in [2], we will be able to show that if the λ 's are sufficiently separated, $I_{A} \leqslant 10 / n$. Hence, in those cases, the order of magnitude of $I_{\text {, }}$, is completely determined. Our main results are as follows.

Theorem. Set $\alpha_{1}=\lambda_{1} ; \alpha_{k}=\lambda_{k}-\lambda_{k-1} k=2,3, \ldots, n$.
(A) If $\alpha_{k} \geqslant k$ for all $k \geqslant 2$

$$
I_{1} \leqslant 10 / n .
$$

(B) If, for $k \geqslant 2$
(i) $\alpha_{k} \geqslant 1$
or
(ii) $\left\{\alpha_{k}\right\}$ is monotonic

$$
I_{1} \leqslant A \mid n^{1 / 2}
$$

where A is a positive number which depends only on α_{2}. (In fact, it can be shown that $A \leqslant 70 \operatorname{Max}\left(1,1 /\left(\alpha_{2}\right)^{1 / 2}\right)$.)

Note that (B) includes the cases where $\left\{\lambda_{k}\right\}$ is any subset of the integers or any "familiar" sequence such as $\lambda_{k}=k^{i}, \lambda_{k}=k \log k$, etc.

In our proof, we will construct rational functions of the form P / Q where $Q(x)>0$ for $x>0$. However, if $\lambda_{1}>0$, it will follow of course that $Q(0) \cdots 0$ and by $R(0)$ we will understand $\lim _{x \rightarrow 0} R(x)$. (Alternatively, we could insist that $\lambda_{1}-0$.)

Proof of (A). To simplify notation, for any $f \in \mathscr{\mathscr { F }}$, we consider $g(x)$ $n f(x / n)$ on the interval $[0, n]$. Note that

$$
\begin{equation*}
g(x-\delta)-g(x) \mid \leqslant \delta \tag{1}
\end{equation*}
$$

We seek a rational function r such that $|g(x)-r(x)| \leqslant 10$ for all $x \in[0, n]$. Setting $R(x)=(1 / n) r(n x)$, it will follow that $\|f-R\| \leqslant 10 / n$. To construct r, let $g_{j} \cdots g(j), j==1,2, \ldots, n$, and set

$$
r(x)=\sum_{j=1}^{n} \frac{g_{j i} x^{\lambda_{j}}}{1_{1}^{x_{1}} 2_{2} \cdots j^{x_{j}}} / \sum_{j=1}^{n} \frac{x^{\lambda_{j}}}{1^{\alpha_{1}} 2^{x_{2}} \cdots j^{j_{j}}}
$$

so that

$$
\begin{equation*}
g(x)-r(x)=\sum\left(g(x)-g_{j}\right) \frac{x^{\lambda_{j}}}{1^{\alpha_{1}} 2^{\alpha_{2}} \cdots j_{j}^{\alpha_{j}}} / \sum \frac{x_{j}^{\lambda_{j}}}{1^{x_{1}} 2^{\alpha_{2}} \cdots j^{x_{j}}} . \tag{2}
\end{equation*}
$$

Suppose then that $k-1 \leqslant x \leqslant k$. To estimate $|g(x)-r(x)|$, we apply a triangle inequality in (2) and inequality (1) to obtain

$$
\begin{aligned}
& g(x)-r(x) \\
& \quad \leqslant \sum_{j=1}^{k-1}|j-k| \frac{x^{\lambda_{j}}}{1^{x_{1} 2^{\alpha_{2}} \cdots j^{x_{j}}}}+\sum_{j=k}^{n} \frac{1 j-k+11 x^{\lambda_{j}}}{1^{x_{1}} 2^{x_{2}} \cdots j^{x_{j}}} / \sum_{j=1}^{n} \frac{x^{\lambda_{j}}}{1^{x_{1} 2^{\alpha_{2}} \cdots j^{\alpha_{j}}}} \\
& 64020 \mathrm{I}-+
\end{aligned}
$$

If we call the first sum above S_{1} and estimate the terms from $j=k-1$ to $j=1$, we find

Note then that $((k-j) /(k-1))^{k-j} \leqslant \frac{1}{2}$ for all $1<j<k$ so that

$$
\begin{aligned}
& S_{1} \leq 1-2+3 \cdot \frac{1}{2} \cdots 4 \cdot \frac{1}{2^{2}} \\
& \quad-1 \div \sum_{i=0}^{\infty} \frac{(i+2)}{2^{2}}
\end{aligned}
$$

$$
7
$$

Similarly, setting

$$
S_{2} \quad \sum_{i=1}^{n} \frac{j \cdots k \cdots 1 x^{\lambda_{j}}}{1^{\alpha_{1}} \cdots j^{\alpha_{j}}} / \frac{x^{\lambda_{k}}}{1 x_{1} \cdots k^{\alpha_{k}}}
$$

we find

$$
\begin{gathered}
S_{2}=1 \div 2\left(\frac{x}{k+1}\right)^{x_{k=1}}-3\left(\frac{x}{k+1}\right)^{x_{k \cdot 1}}\left(\frac{k}{k-\cdots}\right)^{x_{k+2}} \div \cdots \\
\cdots 1+2\left(\frac{k}{k+1}\right)^{k+1} \div 3\left(\frac{k}{k+1}\right)^{k+1}\left(\frac{k}{k-2}\right)^{k+2}+\cdots
\end{gathered}
$$

and using the fact that $(k /(k+j))^{k+j}$ is bounded by $1 / e$.

$$
S_{2} \cdots \sum_{i=1}^{1} \frac{(i+1)}{e^{i}}=e^{e^{2}}\left(e^{2} \quad 3\right.
$$

Hence

$$
g(x)-r(x) \mid \leqslant S_{1} \div S_{2}<10
$$

anh (A) is proven.

$$
\begin{aligned}
& S_{1}=1+2\left(\frac{k-1}{x}\right)^{x_{k-1}}: 3\left(\frac{k-2}{x}\right)^{a_{k}=}\left(\frac{k-1}{x}\right)^{a_{k}} \\
& (k-1)\left(\frac{2}{x}\right)^{2} \cdots\left(\frac{k-1}{x}\right)^{2 / 2} \\
& \leqslant 1 \cdots 2 \cdots 3\left(\frac{k-2}{k-1}\right)^{k+2} \cdots \cdots+(k-1)\left(\frac{2}{k-1}\right)^{2} \cdots\left(\frac{k-2}{k-1}\right)^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{j=1}^{k-1} \frac{j-k}{1^{x_{1}} 2^{a_{2}} \cdots j^{j}} / \frac{x^{\lambda_{k}-1}}{1^{x_{1}} \cdots(k-1)^{k_{k-1}}} \\
& \sum_{j-i}^{n} \frac{j-k}{1-x^{\lambda_{j}}} / \frac{x^{\lambda_{k}}}{1^{x_{1}} 2^{x_{2}} \cdots j^{x_{j}} \cdots k^{x_{k}}} .
\end{aligned}
$$

Proof of (B). (i) If $\alpha_{k} \geqslant 1$, we need only consider the subsequence $\left\{\eta_{k}\right\}$ of $\left\{\lambda_{k}\right\}$, defined by

$$
\eta_{k}=\lambda_{k(k+1) / 2}, \quad k=1,2 \ldots .,\left[n^{1 / 2}\right] .
$$

The η_{k} s are sufficiently separated so that we can apply our results in (A) to conclude that for any $f \in \mathscr{F}$, there is some

$$
R(x)=\sum a_{k \cdot} \cdot x^{m_{k}} / \sum b_{k} \cdot x^{y_{k}}
$$

with

$$
f \cdots R=10 /\left[n^{1 / 2}\right]-20 / n^{1 / 2}
$$

Since the η 's form a subset of the λ 's. we deduce the same upper bound for I_{A}.
(ii) Suppose $\left\{\alpha_{k}\right\}_{k=2}^{n}$ is monotonic and suppose first that it is an increasing sequence. Then, if $\alpha_{[n / 2]} \geqslant 1$, we can apply the previous results to $\lambda_{[n / 2]}, \lambda_{[n / 2]+1}, \ldots, \lambda_{n}$ to conclude $I_{A 1} \leqslant 30 / n^{1 / 2}$. If, on the other hand, $\alpha_{[n / 2]}<1$ we consider the sequence $\eta_{k}=\lambda_{k}-\lambda_{1}, k=1,2, \ldots,[n / 2]$. Since $\eta_{1}=0$ and $\eta_{k-1}-\eta_{k} \leqslant 1$, the analogous approximation index for "polynomials" $\sum a_{k} x^{\eta_{k}}$ is asymptotic to $\left(\sum \eta_{k}\right)^{-1 / 2} \leqslant\left([n / 2] \alpha_{2}\right)^{-1 / 2} \leqslant A / n^{1 / 2}$. See [3. p. 340].

That is, for any $f \in S$, we can find $P(x)-\sum a_{k} x^{\eta_{k}}$ such that

$$
|f-P|: A / n^{1 / 2}
$$

Noting, then, that

$$
P(x)=\sum a_{k} x^{n_{k}}=\sum a_{k} \cdot x^{\lambda_{k}} / x^{\lambda_{1}} \in \mathscr{A}_{11}
$$

our result follows. Completely analogous reasoning applies if $\left\{\alpha_{k}\right\}_{2}^{n}$ is decreasing and the proof is complete.

Remarks. (1) As in the proof of Theorem (B), it is evident that rational combinations of $\left\{x^{\lambda_{k}}\right\}$ form a dense set in $C[0,1]$ for any sequence $0 \leqslant \lambda_{1}<$ $\lambda_{2}<\cdots$ (even without assuming that $\lambda_{k} \rightarrow \infty$ as $k \rightarrow \infty$).
(2) While the upper bound in Theorem (B) depends on x_{2} (or λ_{2}) this dependence may be unavoidable. In fact, if we take a decreasing sequence $\left\{\lambda_{k}\right\} \rightarrow 0$ (e.g., $\lambda_{k}=1 / 2^{\prime \prime}$) so that the λ_{k} 's are not bounded away from zero, it is not even clear that rational combinations of the $\left\{x^{\lambda_{k}}\right\}$ are dense in $C[0,1]$.
(3) As mentioned above, the exact order of magnitude of I_{A} in general is still undetermined. An appealing conjecture is that $I_{A} \sim 1 / n$ for any sequence $0 \leqslant \lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}$. Aside from the cases considered in (A), this is certainly true if $\lambda_{k}=\beta k, 0<\beta \leqslant 2$ since the corresponding polynomial approximation index is $\sim(1 / n)$. If $\lambda_{\imath} \cdots \beta k, \beta>2$, the polynomial
approximation index is $\sim\left(1 / n^{2 / s}\right)$. In these cases, the following smaller estimate can be given for $I_{A 1}$.

Proposition. If $\lambda_{k}-\beta k, \beta=2$,

$$
I_{1}=\frac{A \log ^{2} n}{n}
$$

where A depends only on β.
Proof. For any $f \in \mathscr{F}$, we consider

$$
g(x)==f\left(x^{1 / p}\right) .
$$

Since

$$
g(x+\delta)-g(x) \mid(x+\delta)^{1 / \beta}-x^{1 / \beta} \leqslant \delta^{1 / \beta}
$$

g satisfies a Lipschitz condition of order $1 / \beta$. Furthermore, g is of bounded variation since for any partition $0 \quad x_{0}<x_{1}<\cdots<x_{m}=1$ of the unit interval

$$
\sum_{k=1}^{n / m} g\left(x_{k}\right)-g\left(x_{k}\right) \quad \sum\left(x_{k}^{1} \quad x_{k-1}^{1 / \beta}\right)=-1
$$

But then, according to a theorem of Freud [4] there exists an ordinary nth degree rational function

$$
R_{n}(x) \frac{\sum_{h+1}^{n} a_{k} \cdot x^{k}}{\sum_{k=1}^{n} b_{h} x^{h}}
$$

with

$$
s \cdots R \frac{A \log ^{2} n}{n}
$$

We need only note then that

$$
|g-R|=\| f\left(x^{1 / 3}\right)-\frac{\sum a_{n} r^{k}}{\sum \frac{b_{k}}{k}}=f(x)-\frac{\sum a_{k} \cdot r^{\beta k}}{\sum b_{k} \cdot r^{\beta k}}
$$

and the proposition is proven.

References

1. J. Bak and D. J. Newman, Müntz-Jackson theorems in $L^{\prime \prime}$ and C, Amer, J. Maht. 94 (1972), 437-457.
2. G. Somorjal, unpublished.
3. D. J. Newman, A general Müntz-Jackson theorem, Amer. J. Math. 96 (1974), 340-345.
4. G. Freud, Über Die Approximation Durch Rationale Gebrochene Funktionen, Acta Math. Acad. Sci. Hingar. 17 (1966), 313-324.
